Name: \qquad ,
(Last name)
(First name)
Student Number: \qquad
Registered Section: \qquad
Instructor: Lew Lowther

Solutions

York University
Lassonde School of Engineering
Electrical Engineering \& Computer Science

EECS 1520.03 - COMPUTER USE: Fundamentals
Test 2
Version alt

Instructions:

1. This is an in-class examination, therefore examination rules are in effect.
2. Fill in the box at the top of this page with your name and Student Number.
3. Answer ALL questions in the space provided.
4. Time allowed is $\mathbf{5 0}$ minutes.
5. Use of calculation or communication devices of any type is NOT allowed.
6. There are $\mathbf{7}$ pages of questions in addition to this cover. Please count them.

Part
 A
 B
 C
 D
 E

Totals:

Part A [10 points]

1. Choose the term from the list that matches each description.

Terms

Access Time
Arithmetic/Logic Unit
Block
Control Unit
Cylinder
Instruction Register
Memory
Program Counter
Sector
Spindle
Transfer Rate

Addressability
Arm
Bus Width
CPU
Input
Latency
Output
Registers
Seek Time
Track

Descriptions

| 1) | Computer component that controls the rest |
| :--- | :--- | e - Control Unit \quad.

2. Label each arrow with a term from the list to identify the component to which it points.[6] See Part A1 Solution for the labels.

Part B [5 points]

The table at the bottom of the page lists 3 processes in the Ready state, along with their Service Times.

The charts represent the scheduling of the processes under 3 techniques:

- FCFS - First Come First Served
- RR - Round Robin
- SJN - Shortest Job Next

1) Identify each of the charts by the scheduling technique it represents. [2]

SJN

FCFS

\qquad Round Robin

2) Now use the charts to calculate the Turnaround Time for each technique. [3]

Proc ess	Service Time	Turnaround Times		
		FCFS	SJN	Round Robin
p1		33	46	76
p2	13	46	13	43
p3	44	90	90	90
1				

N.B. When required, use a quantum of 20 units.

Part C [9 points]

The following schemas describe relations in the sample database in CS:I.
A) Movie (MovieId:key, Title, Genre, Rating)
B) Customer (CustomerId:key, Name, Address, CreditCardNumber)
C) Rents (CustomerId, MovieId, DateRented, DateDue)
D) NEW \leftarrow SELECT from MOVIE where RATING = "PG"
E) PGmovies \leftarrow PROJECT MovieId, Title from NEW
F) TEMP1 \leftarrow JOIN CUSTOMER and RENTS where CUSTOMER.CustomerId = RENTS.CustomerId
G) RENTALS \leftarrow PROJECT Name, Address, MovieId from TEMP1
H) TEMP2 \leftarrow JOIN RENTALS and PGmovies where RENTALS.MovieId = PGmovies.MovieId
I) PGrenters \leftarrow PROJECT Name, Address, Title from TEMP2

For each relation below, select its schema from the list above.

	A		
Movield	Title	Genre	Rating
101	Sixth Sense, The	thriller, horror	PG-13
102	Back to the Future	comedy adventure	PG
1033	Monsters, Inc.	animation, comedy	G
104	Field of Dreams	fantasy drama	PG
105	Alien	sci-fi horror	
107	X-Men	action, sci-fi	PG-13
\ldots		action drama war	R
7442	Platoon		

I		
Name	Address	Title
Dennis Cook	789 Main	Back to the Future
Dennis Cook	789 Main	Field of Dreams
Randy Wolf	12 Elm	Field of Dreams
Randy Wolf	12 Elm	Back to the Future

Movield	
102	Title
104	Back to the Future

Select one of the following terms to complete each of the following statements.

A) attribute	B) cardinality constraint
C) database	D) database engine
E) database management system	F) database model
G) Entity-relationship modelling	H) ER diagram
I) Join	J) key
K) physical database	L) Project
M) query	N) relation
O) relational model	P) schema
Q) Select	R) SQL
S) subschema	T) tuple

Place the appropriate LETTER in the blank.

1) A table is also called $a(n)$ \qquad .
2) \qquad is a database operation to extract tuples from a relation.
3) A request to retrieve data from a database is a(n) \qquad .
4) \qquad is a description of the entire database structure used by the database software to maintain the database.
5) \qquad is a collection of files that contain the data.
6) $A(n)$ \qquad is one or more fields of a record that uniquely identifies it.

Part D [10 points]

Refer to the following circuit diagram for all questions in this Part.

1. Complete the Truth Table for this circuit, including Boolean expressions for D, E, and X. [5]

A	B	C	$\mathrm{D}=\mathrm{A} \cdot \mathrm{B}$ or AB	$\mathrm{E}=\mathrm{C}^{\prime}$	$\mathrm{X}=\mathrm{D}+\mathrm{E}$
0	0	0	0	1	1
0	0	1	0	0	0
0	1	0	0	1	1
0	1	1	0	0	0
1	0	0	0	1	1
1	0	1	0	0	0
1	1	0	1	1	1
1	1	1	1	0	1

1 point for columns A, B, C
1 point for correct expressions in the titles
1 point for each correct column
2. Write a Boolean expression that represents the whole circuit.[2]
$X=A B+C^{\prime}$
3. Show how this circuit can be described in a single Excel formula.[3]
$=\operatorname{OR}(\operatorname{AND}(\mathrm{A}, \mathrm{B}), \operatorname{NOT}(\mathrm{C}))$
1 for OR(,)
1 for AND (A , B)
1 for NOT(C)

Part E [16 points]

The tables below are PARTIAL views of a book of worksheets.
All ranges are named using the labels above them, which are bold. Labels are NOT included in the ranges they name. Names for additional ranges are indicated by Comment balloons.

CompositionsTable

Sequenceld	Composerld	Composition	Type	Instrument	Key	
1	1	Giselle	Ballet	Orchestra		
2	2	lberia	Cuite	Orchestra		
3	3	Brandenburg Conc. 6	Concerto	Orchestra		
4	3	Violin Concerto	Concerto	Violin	E Major	
5	3	Violin Concerto	Concerto	Violin	A Minor	
6	3	Brandenburg Conc. 2	Concerto	Orchestra		
7	3	Mass in B Minor	Choral		B Minor	
8	3	Brandenburg Conc. 4	Concerto	Orchestra		
9	3	St. Matthew Passion	Choral			
10	3	Brandenburg Conc. 3	Concerto	Orchestra		
11	3	Brandenburg Conc. 1	Concerto	Orchestra		
12	3	Brandenburg Conc. 5	Concerto	Orchestra		
13	4	Violin Concerto	Concerto	Violin		
14	4	Piano Concerto 1	Concerto	Piano		
15	4	Piano Concerto 2	Concerto	Piano	G	
16	4	Piano Concerto 3	Concerto	Piano	E	
17	5	Symphony 4	Symphony	Orchestra	B Flat	
18	5	Piano Concerto 4	Concerto	Piano	G Major	
19	5	Piano Concerto 5	Concerto	Piano	E Flat Maj	
20	5	Symphony 6	Symphony	Orchestra	F	
21	5	Symphony 3	Symphony	Orchestra	E Flat	
22	5	Symphony 5	Symphony	Orchestra	C Minor	
23	5	Symphony 7	Symphony	Orchestra	A	
24	5	Symphony 8	Symphony	Orchestra	F	
25	5	Piano Concerto 1	Concerto	Piano	C	
26	5	Sonata 23	Sonata	Piano	F Minor	
27	5	Piano Concerto 3	Concerto	Piano	C Minor	
28	5	Sonata 21	Sonata	Piano	C	
29	5	Violin Concerto	Concerto	Violin	D	

ComposersTable

Id	Composers	Initial	YOB	YODCountry
1	Adam	A.	1803	1856 France
2	Albeniz	I.	1860	1909 Spain
3	Bach	J.S.	1685	1750 Germany
4	Bartok	B.	1881	1945 Hungary
5	Beethoven	L. van	1770	1827 Germany
6	Berlioz	H.	1803	1869 France
7	Brahms	J.	1833	1897 Germany
8	Britten	B.	1913	1976 England
9	Bruch	M.	1838	1920 Germany
10	Chopin	F.	1810	1849 Poland

Search

Composer							Composer_ID	Number_of_Works	
				Key					

When the user enters a composer's name on the Search page formulas produce the rest of the content.

Search Composer	Composer_ID	Number_of_Works
Bach	3	10

Work\#	Composition	Type	Instrument	Key
1	Brandenburg Conc. 6	Concerto	Orchestra	
2	Violin Concerto	Concerto	Violin	E Major
3	Violin Concerto	Concerto	Violin	A Minor
4	Brandenburg Conc. 2	Concerto	Orchestra	
5	Mass in B Minor	Choral		B Minor
6	Brandenburg Conc. 4	Concerto	Orchestra	
7	St. Matthew Passion	Choral		
8	Brandenburg Conc. 3	Concerto	Orchestra	
9	Brandenburg Conc. 1	Concerto	Orchestra	
10	Brandenburg Conc. 5	Concerto	Orchestra	

Write a formula for Composer_ID. [4]
=LOOKUP(Composer, Composers, Id)

Write a formula for Number_of_Works. [3]
=COUNTIF(ComposerId, Composer_ID)

The Works\# column uses a set of Recurrence formulas that only display results when it is appropriate, that is, when there is a value in Number_of_Works.
Write the initialising formula (in A5). [5]
$=$ IF(ISNUMBER(Number_of Works), $1, "$ ")

All other content is provided by a single, but complex, formula. Most of it is shown below. Add the missing component. [4]
(Hint: It calculates the column number for the INDEX function.)
=INDEX(CompositionsTable, MATCH(Composer_ID, ComposerId) - Number_of_Works + Works, MATCH(WorksLabels, CompositionLabels, $\underline{0}$)

